Learning of Joint Attention from Detecting Causality Based on Transfer Entropy

نویسندگان

  • Hidenobu Sumioka
  • Yuichiro Yoshikawa
  • Minoru Asada
چکیده

Joint attention, i.e., the behavior of looking at the same object that another person is looking at, plays an important role in human and human-robot communication. Previous synthetic studies focusing on modeling the early developmental process of joint attention have proposed learning methods without explicit instructions for joint attention. In these studies, the causal structure between a perception variable (a caregiver’s face direction or an individual object) and an action variable (gaze shift to a caregiver’s face or to an object location) was given in advance to learn joint attention. However, such a structure is expected to be found by the robot through interaction experiences. In this paper, we investigates how transfer entropy, an information theory measure, is used to quantify the causality inherent in face-to-face interaction. In computer simulations of human-robot interaction, we examine which pair of perceptions and actions is selected as the causal pair and show that the selected pairs can be used for learning a sensorimotor map for joint attention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal

Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Cycle Time Optimization of Processes Using an Entropy-Based Learning for Task Allocation

Cycle time optimization could be one of the great challenges in business process management. Although there is much research on this subject, task similarities have been paid little attention. In this paper, a new approach is proposed to optimize cycle time by minimizing entropy of work lists in resource allocation while keeping workloads balanced. The idea of the entropy of work lists comes fr...

متن کامل

Transfer Entropy for Nonparametric Granger Causality Detection: An Evaluation of Different Resampling Methods

The information-theoretical concept transfer entropy is an ideal measure for detecting conditional independence, or Granger causality in a time series setting. The recent literature indeed witnesses an increased interest in applications of entropy-based tests in this direction. However, those tests are typically based on nonparametric entropy estimates for which the development of formal asympt...

متن کامل

Classification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal

The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JRM

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2008